Volume comparison of Bishop-Gromov type
نویسندگان
چکیده
منابع مشابه
Bishop-Phelps type Theorem for Normed Cones
In this paper the notion of support points of convex sets in normed cones is introduced and it is shown that in a continuous normed cone, under the appropriate conditions, the set of support points of a bounded Scott-closed convex set is nonempty. We also present a Bishop-Phelps type Theorem for normed cones.
متن کاملGromov ’ s invariant and the volume of a hyperbolic manifold
This is an electronic edition of the 1980 notes distributed by Princeton University. The text was typed in T E X by Sheila Newbery, who also scanned the figures. Typos have been corrected (and probably others introduced), but otherwise no attempt has been made to update the contents. Numbers on the right margin correspond to the original edition's page numbers. Thurston's Three-Dimensional Geom...
متن کاملASSOCIATED CURVES OF THE SPACELIKE CURVE VIA THE BISHOP FRAME OF TYPE-2 IN E₁³
The objective of the study in this paper is to define M₁,M₂-direction curves and M₁,M₂-donor curves of the spacelike curve γ via the Bishop frame of type-2 in E₁³. We obtained the necessary and sufficient conditions when the associated curves to be slant helices and general helices via the Bishop frame of type-2 in E₁³. After defining the spherical indicatrices of the associated curves, we obta...
متن کاملHilbert Volume in Metric Spaces , Part 1 . Misha Gromov
We introduce a notion of Hilbertian n-volume in metric spaces with Besicovitch-type inequalities built-in into the definitions. The present Part 1 of the article is, for the most part, dedicated to reformulation of known results in our terms with proofs being reduced to (almost) pure tautologies. If there is any novelty in the paper, this is in forging certain terminology which, ultimately, may...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Australian Mathematical Society
سال: 1992
ISSN: 0004-9727,1755-1633
DOI: 10.1017/s0004972700030100